
A Homotopy Method for Potential Energy Minimization of a Protein Model

Daniel M. Dunlavy

Applied Mathematics and Scientific Computation Program

Dianne O'Leary

Department of Computer Science, UMIACS

Homotopy Optimization Method (HOM) Given – Energy Functions: • Template: $E^0(X)$

- Target: $E^1(X)$
- Native target conformation: $X^0 = \min_{Y} E^0(X)$
- Goal
 - Define a Homotopy Function:
 - $H(X,\lambda) = (1 \lambda)E^{0}(X) + \lambda E^{1}(X)$
- Produce sequence of minimizers of $H(X, \lambda)$ starting at $\lambda = 0$ and ending at $\lambda = 1$

• Deforms template protein into target protein

Stochastically Perturbed Homotopy **Optimization Method (SPHOM)**

- Improvements over HOM
 - Produces ensembles of sequences of minimizers of $H(X,\lambda)$ by perturbing intermediate results
- Increases likelihood of predicting native structures
- SPHOM iteration on each ensemble member while $(\lambda <= 1)$ while (k < ensemble size)

 $X^k = \min_X H(X, \lambda)$, using $\xi(X_{prev})$ as starting point $X^0 = \min_X H(X, \lambda)$, using X_{prev} as starting point $\lambda = \lambda + \Delta \lambda$

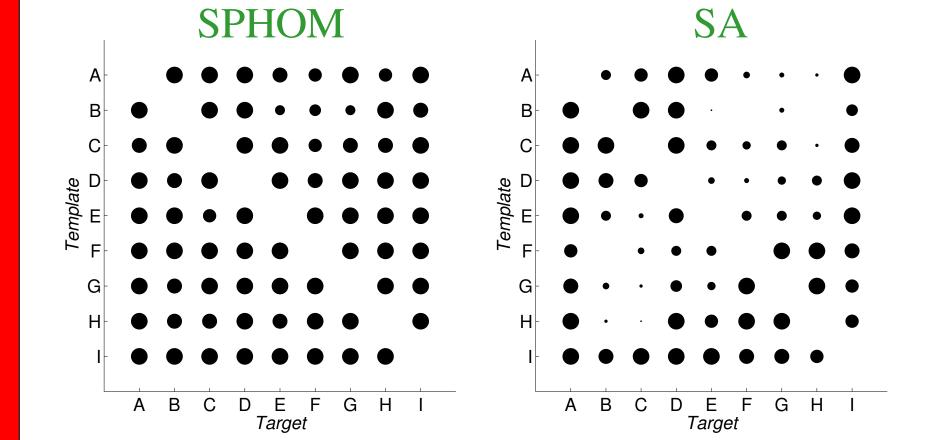
Experiments

• 9 chains (22 particles each) with known structure

Loop Region Sequence Homology (%))				
A •••••••••		A	В	С	D	Е	F	G	Н	I
B	A	100								
C •••••••	В	77	100							
$D_{\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet}$	C	86	91	100						
	D	91	86	77	100					
E •••••••	Е	73	82	73	82	100				
F \sim	F	68	68	59	77	86	100			
G	G	68	68	59	77	86	100	100		
H	Н	68	68	59	77	86	100	100	100	
I •••••••	I	73	59	64	68	77	73	73	73	100
Hydrophobic Hydrophilic Neutral										

Experiments

- 62 template-target pairs
 - 10 pairs had identical native structures
- Methods
- HOM vs. Newton's method w/trust region (N-TR)
- SPHOM vs. simulated annealing (SA) • Different ensemble sizes (2,4,8,16)
- Averaged over 10 runs
- Measuring the success of prediction
 - − Structural overlap function: $0 \le \chi \le 1$
 - Percentage of interparticle distances off by more than 20% of the average bond length (\bar{r})
- Success: $\chi = 0$


Results

				Mean	Time
Method	$\chi = 0$	Success	Mean χ	RMSD	(sec)
НОМ	15	0.24	0.36	0.38	10
N-TR	4	0.06	0.45	0.55	1

	Ensemble				Mean	Time
Method	Size	$\chi = 0$	Success	Mean χ	RMSD	(sec)
SPHOM	2	33.40	0.54	0.14	0.17	35
	4	43.10	0.70	0.08	0.11	65
	8	54.60	0.88	0.03	0.04	115
	16	59.00	0.95	0.01	0.02	200
SA	2	13.10	0.21	0.27	0.36	52
	4	20.80	0.34	0.19	0.26	107
	8	28.50	0.46	0.13	0.19	229
	16	40.20	0.65	0.08	0.12	434

Results

Success of SPHOM and SA with ensembles of size 16 for each template-target pair. The size of each circle represents the percentage of successful predictions over the 10 runs.

